Press "Enter" to skip to content

New PDF release: Arithmetic, Geometry and Coding Theory (AGCT 2003)

By Yves Aubry, Gilles Lachaud

ISBN-10: 2856291759

ISBN-13: 9782856291757

Résumé :
Arithmétique, géométrie et théorie des codes (AGCT 2003)
En mai 2003 se sont tenus au Centre overseas de Rencontres Mathématiques à Marseille (France), deux événements centrés sur l'Arithmétique, los angeles Géométrie et leurs purposes à l. a. théorie des Codes ainsi qu'à los angeles Cryptographie : une école Européenne ``Géométrie Algébrique et Théorie de l'Information'' ainsi que l. a. 9ème édition du colloque overseas ``Arithmétique, Géométrie et Théorie des Codes''. Certains des cours et des conférences font l'objet d'un article publié dans ce quantity. Les thèmes abordés furent à l. a. fois théoriques pour certains et tournés vers des functions pour d'autres : variétés abéliennes, corps de fonctions et courbes sur les corps finis, groupes de Galois de pro-p-extensions, fonctions zêta de Dedekind de corps de nombres, semi-groupes numériques, nombres de Waring, complexité bilinéaire de l. a. multiplication dans les corps finis et problèmes de nombre de classes.

Mots clefs : Fonctions zêta, variétés abéliennes, corps de fonctions, courbes sur les corps finis, excursions de corps de fonctions, corps finis, graphes, semi-groupes numériques, polynômes sur les corps finis, cryptographie, courbes hyperelliptiques, représentations p-adiques, excursions de corps de classe, groupe de Galois, issues rationels, fractions keeps, régulateurs, nombre de sessions d'idéaux, complexité bilinéaire, jacobienne hyperelliptiques

In may perhaps 2003, occasions were held within the ``Centre foreign de Rencontres Mathématiques'' in Marseille (France), dedicated to mathematics, Geometry and their functions in Coding thought and Cryptography: an eu university ``Algebraic Geometry and knowledge Theory'' and the 9-th overseas convention ``Arithmetic, Geometry and Coding Theory''. the various classes and the meetings are released during this quantity. the themes have been theoretical for a few ones and grew to become in the direction of functions for others: abelian types, functionality fields and curves over finite fields, Galois crew of pro-p-extensions, Dedekind zeta services of quantity fields, numerical semigroups, Waring numbers, bilinear complexity of the multiplication in finite fields and sophistication quantity problems.

Key phrases: Zeta capabilities, abelian types, capabilities fields, curves over finite fields, towers of functionality fields, finite fields, graphs, numerical semigroups, polynomials over finite fields, cryptography, hyperelliptic curves, p-adic representations, type box towers, Galois teams, rational issues, persevered fractions, regulators, perfect classification quantity, bilinear complexity, hyperelliptic jacobians

Class. math. : 14H05, 14G05, 11G20, 20M99, 94B27, 11T06, 11T71, 11R37, 14G10, 14G15, 11R58, 11A55, 11R42, 11Yxx, 12E20, 14H40, 14K05

Table of Contents

* P. Beelen, A. Garcia, and H. Stichtenoth -- On towers of functionality fields over finite fields
* M. Bras-Amorós -- Addition habit of a numerical semigroup
* O. Moreno and F. N. Castro -- at the calculation and estimation of Waring quantity for finite fields
* G. Frey and T. Lange -- Mathematical heritage of Public Key Cryptography
* A. Garcia -- On curves over finite fields
* F. Hajir -- Tame pro-p Galois teams: A survey of contemporary work
* E. W. Howe, okay. E. Lauter, and J. most sensible -- unnecessary curves of genus 3 and four
* D. Le Brigand -- actual quadratic extensions of the rational functionality box in attribute two
* S. R. Louboutin -- specific top bounds for the residues at s=1 of the Dedekind zeta services of a few completely genuine quantity fields
* S. Ballet and R. Rolland -- at the bilindar complexity of the multiplication in finite fields
* Yu. G. Zarhin -- Homomorphisms of abelian types

Show description

Read Online or Download Arithmetic, Geometry and Coding Theory (AGCT 2003) PDF

Best number theory books

Download e-book for kindle: From Cardano's Great Art to Lagrange's Reflections: Filling by Jacqueline Stedall

This publication is an exploration of a declare made by means of Lagrange within the autumn of 1771 as he embarked upon his long "R? ©flexions sur l. a. answer alg? ©brique des equations": that there have been few advances within the algebraic answer of equations because the time of Cardano within the mid 16th century. That opinion has been shared by way of many later historians.

New PDF release: From Fermat to Minkowski: Lectures on the Theory of Numbers

Tracing the tale from its earliest assets, this booklet celebrates the lives and paintings of pioneers of contemporary arithmetic: Fermat, Euler, Lagrange, Legendre, Gauss, Fourier, Dirichlet and extra. contains an English translation of Gauss's 1838 letter to Dirichlet.

Get Algebraic operads : an algorithmic companion PDF

Algebraic Operads: An Algorithmic spouse offers a scientific remedy of Gröbner bases in different contexts. The publication builds as much as the speculation of Gröbner bases for operads as a result moment writer and Khoroshkin in addition to numerous purposes of the corresponding diamond lemmas in algebra. The authors current various issues together with: noncommutative Gröbner bases and their functions to the development of common enveloping algebras; Gröbner bases for shuffle algebras which are used to unravel questions about combinatorics of diversifications; and operadic Gröbner bases, vital for functions to algebraic topology, and homological and homotopical algebra.

Additional resources for Arithmetic, Geometry and Coding Theory (AGCT 2003)

Sample text

Exponential sums, solutions of polynomial equations. c S´ eminaires et Congr` es 11, SMF 2005 O. N. CASTRO 30 Let |N | be the number of common zeros to the r polynomials. Introduce r auxiliary variables Y1 , . . , Yr . q r |N | = (Y1 F1 (X1 , . . ,Xn )∈Fq = (Yr Fr (X1 , . . , Xn )) Y1 ∈Fq Yr ∈Fq (Y1 F1 (X) + · · · + Yr Fr (X)). X Y We define L as follows (1) L = min r k=1 n j=1 Nk i=1 where the minimum is taken over all tijk ’s (0 conditions σ(tijk )/(p − 1) − rf, tijk q − 1), satisfying the following t111 + t221 + · · · + t1N1 1 ≡ 0 mod q − 1, t112 + t222 + · · · + t2N2 2 ≡ 0 mod q − 1, ..

Now we return to a tower F over Fq recursively defined by a polynomial f (X, Y ) ∈ Fq [X, Y ]. The function field Fn can be described as Fq (x1 , x2 , . . , xn ) with the relations f (xi , xi+1 ) = 0, for 1 i n − 1. An Fq -rational place P of the function field Fn therefore gives rise to a path of length n − 1 in the graph Γ(f, Fq ). The corresponding sequence of visited vertices is x1 (P ), . . , xn (P ). The number of paths of length n − 1 in the graph therefore gives some information on the number of Fq rational places of the function field Fn .

1041, Herman, Paris, 1948. [17] J. D. Thesis, Universit¨ at Essen, Essen, 2002. [18] T. Zink – Degeneration of Shimura surfaces and a problem in coding theory, in Fundamentals of Computation Theory, Lecture Notes in Computer Science, vol. 199, Springer, Berlin, 1985, p. 503–511. P. dk A. br H. edu ´ ` 11 SEMINAIRES & CONGRES S´ eminaires & Congr` es 11, 2005, p. 21–28 ADDITION BEHAVIOR OF A NUMERICAL SEMIGROUP by Maria Bras-Amor´os Abstract. — In this work we study some objects describing the addition behavior of a numerical semigroup and we prove that they uniquely determine the numerical semigroup.

Download PDF sample

Arithmetic, Geometry and Coding Theory (AGCT 2003) by Yves Aubry, Gilles Lachaud

by Jason

Rated 4.27 of 5 – based on 43 votes